Search

Monday, February 04, 2013

Areas of Geometric Shapes


Square


square
A = a2     (1a)
a = A1/2    (1b)
d = a 21/2    (1c)

Rectangle

rectangle
A = a b          (2a)
d = (a2 + b2)1/2     (2b)

Parallelogram

parallelogram
A = a h 
  = a b sin α       (3a)
d1 = ((a + h cot α)2 + h2)1/2    (3b)
d2 = ((a - h cot α)2 + h2)1/2    (3b)

Equilateral Triangle

equilateral triangle
A = a2/3 31/2    (4a)
h = a/2 31/2     (4b)

Triangle

 triangle
A = a h / 2  
  = r s       (5a)
r = a h / 2s     (5b)
R = b c / 2 h     (5c)
s = (a + b + c) / 2     (5d)
x = s - a     (5e)
y = s - b     (5f)
z = s - c     (5g)

Trapezoid

trapezium
A = 1/2 (a + b) h  
  = m h       (6a)
m = (a + b) / 2      (6b)

Hexagon

hexagon
A = 3/2 a2 31/2      (7a)
d= 2 a 
  =  2 / 31/2 s 
  = 1.155 s      (7b)
s = 31/2 / 2 d  
   = 0.866 d      (7c)

Circle

circle

A = π/4 d2
  = π r2 
  = 0.785.. d2        (8a)
U = 2 π r 
  =  π d      (8b)

Sector and Segment of a Circle

Sector of Circle

Area of a sector of circle can be expressed as
A = 1/2 θr r2         (9)
= 1/360 θd π r2
where
θ= angle in radians
θ= angle in degrees

Segment of Circle

Area of a segment of circle can be expressed as
A = 1/2 (θr - sin θr) r2
= 1/2 (π θd/180 - sin θd) r2         (10)

Right Circular Cylinder

Lateral surface area of a right circular circle can be expressed as
A = 2 π r h         (11)
where
h = height of cylinder (m, ft)
r = radius of base (m, ft)

Right Circular Cone

Lateral surface area of a right circular cone can be expressed as
A = π r l
= π r (r2 + h2)1/2         (12)
where
h = height of cone (m, ft)
r = radius of base (m, ft)
l = slant length (m, ft)

Sphere

Lateral surface area of a sphere can be expressed as
A = 4 π r2         (13)

No comments: